Mean-Square Stability of Uncertain Delayed Stochastic Systems Driven by G-Brownian Motion

نویسندگان

چکیده

This paper investigates the mean-square stability of uncertain time-delay stochastic systems driven by G-Brownian motion, which are commonly referred to as G-SDDEs. To derive a new set sufficient conditions, we employ linear matrix inequality (LMI) method and construct Lyapunov–Krasovskii function under constraint uncertainty bounds. The resulting condition does not require any specific assumptions on G-function, making it more practical. Additionally, provide numerical examples demonstrate validity effectiveness proposed approach.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Result concerning Mean Square Exponential Stability of Uncertain Stochastic Delayed Hopfield Neural Networks

By using the Lyapunov functional method, stochastic analysis, and LMI (linear matrix inequality) approach, the mean square exponential stability of an equilibrium solution of uncertain stochastic Hopfield neural networks with delayed is presented. The proposed result generalizes and improves previous work. An illustrative example is also given to demonstrate the effectiveness of the proposed re...

متن کامل

Stability theorem for stochastic differential equations driven by G-Brownian motion

In this paper, stability theorems for stochastic differential equations and backward stochastic differential equations driven by G-Brownian motion are obtained. We show the existence and uniqueness of solutions to forward-backward stochastic differential equations driven by G-Brownian motion. Stability theorem for forward-backward stochastic differential equations driven by G-Brownian motion is...

متن کامل

Mean-square filtering for uncertain linear stochastic systems

This paper presents the mean-square joint filtering and parameter identification problem for uncertain linear stochastic systems with unknown parameters in both, state and observation, equations, where the unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11102405